广告招募

当前位置:全球资源网 > 技术中心 > 所有分类

核电站控制阀抗地震结构的改进

2023年05月21日 08:25:20      来源:浙江科士达自控阀门有限公司 >> 进入该公司展台      阅读量:6

分享:

  过去五十年中,自动电站控制阀的基本功用没有变化。只是在固定的基本性能上有所提高如增加流量系数,减少噪音,减少气蚀和改进流量特性。然而结构设计特性的改变十分缓慢。直到核能的出现,才使阀门制造者在设计电站控制阀时不得不考虑到像地震这类外界力量产生的影响。
  核电站用控制阀必须能承受地震的影响。事实上,这是美国联邦管理法规上就关于本国核电站的设计、建筑和运转等一系列广泛论题规定了必要条件。10CFFR50是“美国联邦设备生产和使用许可证”的代称,其附录A中列出了“核电站控制阀通用设计标准”(GDC)。GDC一2中有一段中说:“核电站控制阀结构,装置和元件必须设计成能承受如地震、龙卷风、飚风…之类自然现象的影响”.别的GDC也可作为指示设备抗地震和动力限制的必要条件的参考。这些包括GDC一1,一4,一14和一30.
  尽管名义上有,但这类未作详细说明的通用标准实际上无法执行。随着核工业的成熟,核电站设备的抗地震设计和分析也就随之明确,所有工业部门提出的这些GDC在今天的抗地震设计控制阀的改进中有了一席之地。核能调节委员会(NRC)发布了“标准检验方案”和“标准调节指导。”各工业组织也发布了称为“NRC”要求标准的一系列法规和标准。建筑设计师和公用事业也开始发布有关法规,对标准调节指导,标准检验方案和许可证的申请都有明确的要求。最后,电站控阀制造者为满足工业上抗地震限制条件而改进了产品结构设计。
  抗地震限制的必要条件(SQR)
  起初,电站控制阀说明书中有关抗地震必要条件通常很少,只是简单性地说一些如“这些阀门能经受住地震、龙卷风等自然现象影响”或“这些阀门在设计中考虑了地理的影响”,通常在这些条件中都没有定量的数值。与之形成对比的是,今天的说明书中有关抗地震条件部分在规定可接受的限制方式,设备必须限制的加速率是十分精确。在很早期的工厂中,电站控制阀抗地震设计必要条件只是认为当设备安置在一个很活跃的地震带时方是必须的。在那些工厂中设备和建筑都是根据建筑法规(VBC)的要求设计的,是采用静态的分析技术。由1965年的抗地震设计内容形成了一个所有核电站控制阀的通用条件规范。有足够的证据可以显示出地震可能在任何一个地方发生,不论是在地震频繁的地区还是只是在历曾经发生过的地方,都有可能发生地震。发生于写萨诸塞州(1755年);密苏里洲(1812年)南卡罗来纳洲(1876年)的几次大地震证明在核电站的设计中应考虑抗地震设计。
  早期,大部分设备被限定使用静态的分析方式,与复杂的建筑及其它结构相比这对于结构简单的电站控制阀是适用的。用于这些分析的输入加速率通常以建立反应加速率为基础或甚至是以场地而不是以管线系统的反应加速率为基础,但仍然没有标准。
  在发展的前期,专业组织为了核工业的特殊需要而建立了各种委领会和职业团体,对电站控制阀制造者影响的两个协会是“美国机械工程师学会”(ASME)和“电与电子协会(IEEE)。ASME中有关锅炉与压力容器规范中第3部分是专门为核电站的元件所编写的,1968年这部分成了法规草案的雏形,并于1971年次用它的全部内容出版发行,在以后6个月中又做了数次修改。然而,ASME-IlI中仅指明了电站控制阀的压力范围。根据其定义,只是有阀体、阀盖、阀杆和连接体盖的螺栓的压力范围对于阀门的其余部分即附件和驱动装置,在ASME-III中没有提及,正因如此,在法规中只涉及压力界线完整性而没有涉及设备运行的能力。
  为了表明在地震中和地震后设备运行的能力,就必须制订别的标准。IEEE一344是的设备抗地震用参考标准。在1971年公布,1975年其主要部分做了很大的修订。尽管IEEE标明其适用于机电设备上,但其通常被为适用于所有设备的抗地震限定条件标准。NRC的标准检验方案3.10中讨论了机电设备的抗地震条件,在SRP3.10中NRC阐明IEEE一344适用于所有类型的机电设备的抗震要求。
  后来,直到IEEE一382在1972年发布时,电站控制阀驱动装置或阀门组件的抗地震限定要求才有一些规定。然而,那时它只是规定了电站控制阀电动驱动装置的限定(在地震环境中)而对于弹性隔膜驱动装置,汽缸驱动装置,液压驱动装置等没有特别的限定标准。于1980年发布的IEEE一382改变了这种现象,它包括了全部各种驱动装置的限定标准IEEE一382-1990”电站控制阀驱动装置安全条件IEEE标准“中说明”该规范适用于所有类型的动力驱动的电站控制阀驱动装置“.
  IEEE一344和IEEE一382是广泛被的关于阀门或电站控制阀驱动装置抗地震的标准,还育许多别的标谁也被公布或是得到了不同的发展。然而,这些标准很难如上述两者那样得到广泛的承认,因为这些标准中很难使人对于他们的必要条件有清楚的理解,而几乎不能保证他们的技术和设计要求,这些标准被列到附录A中。
  这些标准中的每一个都将电站控制阀组件看成是一个独立的单位,关于阀门对装置在其上的管线系统或管线系统对阀门的影响都没有说明。因而。管线系统设计者就处于甚至在阀门被选择或买主选择之前就必须考虑在他们的管线系统中的阀门的动力学特性这样一个平的位置上。当然,电站控制阀制造者也必须在管线系统定案之前详细说电站控制阀的抗地震要求,这是一个制动装置一22一一管线系统设计着只有在知道阀门将怎样反应之后才能为他的管线系统中的电站控制阀定型,而电站控制阀制造者只有知道管线系统将怎样反应才能限定在个特别管线位置上的阀门。这样,阀门规范中的通用抗地震规范待以发展。
  这些通用的规范是阀门制造者和管线系统设计者之间的一个折衷,电站控制阀制造者同意排除从阀门回到管线系统的动力学反馈。它被要求这样做是因为阀门组件在一个可选择值上有其基本的自然频率。通常是33Hz.在这种方式下任何建筑或管线都被认为具有低于33Hz,否则就不能承受地震的共振谐率。这样将不会导致电站控制阀的共振和其固有的放大。因此,管线系统的设计者是需在它的系统中考虑电站控制阀的质量。作为回报,管线系统设计者同意限制成为阀门地震输入的管线系统的动态特性一达到某个值。这个值的上限成为阀门限定的输入加速度,依据建筑工程师的意见通常是3.og或45g,至今为止,电站控制阀抗地震设计条件的,发展是从一般设计准则到工业的法规和标准。最后技术要求中要求一个具有自然频率大于331HZ和属于1~33Hz频率范围之内3.0g的或4.5g的输入加速度。
  研究控制阀抗地震结构改进的方法是逐一研究它的主要零部件,这些部件见图1;它们是阀体、阀盖、与阀盖相连的驱动装置和装置驱动装置之上的驱动装置附件。

版权与免责声明:
1.凡本网注明"来源:全球资源网"的所有作品,版权均属于兴旺宝装备总站,转载请必须注明兴旺宝装备总站。违反者本网将追究相关法律责任。
2.企业发布的公司新闻、技术文章、资料下载等内容,如涉及侵权、违规遭投诉的,一律由发布企业自行承担责任,本网有权删除内容并追溯责任。
3.本网转载并注明自其它来源的作品,目的在于传递更多信息,并不代表本网赞同其观点或证实其内容的真实性,不承担此类作品侵权行为的直接责任及连带责任。其他媒体、网站或个人从本网转载时,必须保留本网注明的作品来源,并自负版权等法律责任。 4.如涉及作品内容、版权等问题,请在作品发表之日起一周内与本网联系。